Köthe-Toeplitz And Topological $c_0^2(X,\lambda,p), c^2(X,\lambda,p)$ and $l_m^2(X,\lambda,p)$

J.K. Srivastava, R.K. Tiwari

Abstract— This paper is in continuation of [4]. Here we characterize generalized KÖthe-Toeplitz duals of the matrix classes $C_0^2(X,\lambda,p)$, $C^2(X,\lambda,p)$ and $l_\infty^2(X,\lambda,p)$ and by application of these dualsof the matrix spaces $C_0^2(X,\lambda,p)$ and $C^2(X,\lambda,p)$.

Subject Classification— Primary -46A45 ,Secondary- 46A15.

Index Terms— Locally convex space , matrix space , generalized KÖthe-Toeplitz duals and topological duals.

I. INTRODUCTION

Concerning the notations and terminology and results, we follows [1,3]. Let (X, \Im) be a Hausdorff locally convex topological vector space (lc TVS) over the field of complex numbers C and X^* be its topological dual. We denote U by the fundamental system fbalanced, convexanda bsorbingneighbourhoodsofzerovecto θ to denote g_v to denote the gauge (Minkowski functionals) generating the topology \Im of X.

By a generalized matrix, a generalized double sequence we mean a double sequence $\bar{x} = (x_{mn})$ with elements from X. Let $p = (p_{mn})$ be a double sequence of strictly positive real numbers and $\lambda = (\lambda mn)$ be a double sequence of non-zero complex numbers. Throughtout the paper we shall take $p = (p_{mn}) \in l_{\infty}^2$, space all bounded scalar double sequences, $H = H(p) = \sup_{m,n} p_{mn}$ and $M = M(p) = \max(1, H)$. For $x \in X$, $\delta^{mn}(x)$ denotes the double sequence whose all terms are x,(see[4]).

We now consider the dual system (X, X^*) with respect to the canonical bilinear functional $\langle x, f \rangle$ which is the value of $f \in X^*$ at $x \in X$. If $A \subset X$ then polar of A is denoted to be By space of vector double sequences E(X) we mean a vector space of double sequences in X over C with respect to

J.K. Srivastava, R.K. Tiwari, Department of Mathematics & Statistics D.D.U. Gorakhpur University ,Gorakhpur 273009,INDIA.

This paper has been written while J.K.Srivastava held a project (No. F8-11/98 (SR-I), 16 Oct.1998) of University Grants Commission and R.K.Tiwari worked in it as a Project Fellow. The support by Commission is very gratefully acknowledge.

coordinatewise addition and scalar multiplication . The

double summation $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}$ denote by $\sum \sum$ is taken in the sense $\lim_{n \to \infty} \sum \sum_{2 \le m+n \le N}$.

$$A^{o} = \{ f : |\langle x, f \rangle| \le 1 \text{ for all } x \in X^{a} \}.$$

We take X^* with the strong topology $\beta(X^*, X)$ generated by the family $D' = \{ \mathcal{G}_{B^o} : B \in B \}$ where B is the collection of all bounded sets (or $\sigma_{(X, X^*)}$) -bounded sets) B of X, B^o is the polar of B with respect to bilinear form $\langle x, f \rangle = f(x)$ of the pairing (X, X^*) and for $f \in X^*$,

$$g_{B^0}(f) = \sup \{ |\langle x, f \rangle| : x \in B \}.$$

A subset A of linear functional which are defined on lcTVS X is called equicontinuous if there exists $U \in \mathbf{U}$ such that $A \subset U^{o} \cdot A$ locally convex topological vector space X is said to be sequentially barrelled if every sequence $\{f_{mn}\} \subset X^{*}$ which converges to θ in $\beta(X^{*}, X)$ is equicontinuous. For $U \in \mathbf{U}$, the set U^{o} is balanced , bounded , convex and $\beta(X^{*}, X)$ -complete subset of X^{*} . Let N(U)= $\{x \in X : g_{U}(x) = 0\}$. For p= (p_{mn}) and $\lambda = (\lambda_{mn})$ in [4] we have introduced and studied the following classes :

(1.1)
$$C_{\bar{0}} (X,\lambda,p) = \{ \bar{x} = (x_{mn}) : x_{mn} \in X, m, n \ge 1 \text{ and} \}$$

 $(g_U(\lambda_{mn}x_{mn}))^{p_{mn}} \rightarrow 0 \text{ as } m + n \rightarrow \infty \text{ for} \}$
(1.2) $C^2 (X,\lambda,p) = \{ \bar{x} = (x_{mn}) : x_{mn} \in X, m, n \ge 1 \text{ and} \}$
 $(g_U(x_{mn}\lambda_{mn} - x))^{p_{mn}} \rightarrow 0 \text{ m+ n} \}$

KÖthe-Toeplitz And Topological $C_0^2(X,\lambda,p)$, $C^2(X,\lambda,p)$ and $l_{\infty}^2(X,\lambda,p)$

 $\begin{array}{ccc} (1.3) & l_{\infty}^{2}(X,\lambda,p) \\ \{ & \bar{x} = (x_{mn}) : x_{mn} \in X, m, n \ge 1 \\ \text{and} \end{array}$

 $\sup_{m,n} (g_U(x_{mn}\lambda_{mn}))^{p_{mn}}$ $< \infty \quad \text{for each } g_U \in D_{\}}.$

Then the quotient spaces $X_{U} = X/N(U)$ is a normed space with respect to the norm \hat{g} where $\hat{g}_{x(U)} = g_{U}(x)$, x(U) being the equivalence class in X_{U} corresponding to the element $x \in X$. The subspace $X^{*}(U^{o}) = \bigcup_{n=1}^{\infty} nU^{o}$ of X^{*} , is a Banach space with respect to the norm $g_{U^{o}}(f) =$ $\sup\{|\langle x, f \rangle|_{:x} \in U\}$. Further we have THEOREM 1.1: The Banach space $(X^{*}(U^{o}), g_{U^{o}})$ is the topological dual of (X_{U}, \hat{g}_{U}) for each $U \in U$.

We now define the generalized K^{\ddot{o}} the-Toeplitz duals i.e., generalized $\alpha -, \beta -, and \gamma - duals$ for a class E(X) of vector double sequences by $(E(X))^{\alpha} = \{\bar{f}_{=}(f_{mn}) : f_{mn} \in X^*, m, n \ge 1$ and $\sum \sum |\langle x_{mn}, f_{mn} \rangle| < \infty$ for all $\bar{x}_{=}(x_{mn}) \in E(X) \}$; $(E(X))^{\beta} = \{\bar{f}_{=}(f_{mn}) : f_{mn} \in X^*, m, n \ge 1$ and $\sum \sum \langle x_{mn}, f_{mn} \rangle$ is convergent for all $\bar{x}_{=}(x_{mn}) \in E(X) \}$;

 $(E(X))^{\gamma} = \{ \overline{f}_{=}(f_{mn}) : f_{mn} \in X^*, m, n \ge 1$ $\sup_{\substack{N>1} \\ \text{for all}} \sum_{\substack{N>1} \\ \overline{x}_{=}(x_{mn}) \in E(X) \}} \langle x_{mn}, f_{mn} \rangle |$

DEFINITION 1.2 : Let E(X) be a space of vector double sequences .(i) E(x) is said to be normal if for $\overline{x} = (x_{mn})$ $\in E(X)$ and for every scalar double sequence $\overline{\alpha} = (\alpha_{mn})$ with $|\alpha_{mn}| \le 1$, m,n ≥ 1 the double sequence $\overline{\alpha}\overline{x} = (\alpha_{mn}x_{mn}) \in E(X)$. (ii) E(X) if is said to be monotone E(X) contains the canonical pre – images of all its step spaces (cf.[2]).

On the lines of scalar single sequences [2], we can easily prove :

THEOREM 1.3: A space E(x) of vector double sequences is

- (i) normal if and only if $l_{\infty}^2 E(X) \subset E(X)$; and
- (ii) monotone if and only if $m_0^2_{E(X)} \subset E(X)$,

where m_0^2 is the space of scalar double sequences spanned by all double sequences formed by zeros and ones. Further we easily get :

THEOREM 1.4 : (i)
$$(E(X))^{\alpha} \subset (E(X))^{\beta} \subset (E(X))^{\gamma}$$
,
(ii) $(E(X))^{\alpha} = (E(X))^{\beta}$ if $E(X)$ is monotone,
and
(iii) $(E(X))^{\alpha} = (E(X))^{\gamma}$ if $E(X)$ is normal.

II. KÖTHE – TOEPLITZ DUALS

In this section we characterize

$$\alpha -, \beta -, and \gamma - duals$$
 $c_0^2 (X, \lambda, p)$
 $c_1^2 (X, \lambda, p)_{and}$ $l_{\infty}^2 (X, \lambda, p)$.
We easily have :

LEMMA 2.1 : (I) $C_0^2(X,\lambda,p)$ and $l_{\infty}^2(X,\lambda,p)$ are normal ; and

(ii)
$$\boldsymbol{c}^{2}(X,\lambda,p)$$
 is not monotone

We now define

(2.1) $M_0^2(X, \lambda, p) = \{ \overline{f} = (f_{mn}) : f_{mn} \in X^* \\, m, n \ge 1 \text{ and for each } B \in B \text{ there exists an integer } K > \\1 \text{ such that } \sum \sum |\lambda|^{-1} g_{B^0}(f_{mn}) K^{-1/p_{mn}} < \infty \}.$

THEOREM 2.2 : If X sequentially barrelled lcTVS then

 $(c_0^2(X,\lambda,p))^{\alpha} = M_0^2(X^*,\lambda,p)$. COROLLARY 2.3 : If X is sequentially barrelled lcTVS then

$$(c_0^2(X,\lambda,p)^{\beta} = (c_0^2(X,\lambda,p)^{\gamma} = M_0^2(X,^*\lambda,p))$$

THEOREM 2.4 : Let X be sequentially barrelled lcTVS.Then (i) $(C_0^2(X,\lambda,p))^{\alpha} = M_0^2(X^*,\lambda,p) \cap S(X^*,\lambda,l_1^2)$ (ii) $(C_0^2(X,\lambda,p))^{\beta} = M_0^2(X^*,\lambda,p) \cap S(X^*,\lambda,l_1^2)$ (iii $(C_0^2(X,\lambda,p))^{\gamma} = M_0^2(X^*,\lambda,p) \cap S(X^*,\lambda,l_1^2)$ (iii $(C_0^2(X,\lambda,p))^{\gamma} = M_0^2(X^*,\lambda,p) \cap S(X^*,\lambda,l_1^2)$ (iii $(C_0^2(X,\lambda,p))^{\gamma} = M_0^2(X^*,\lambda,p) \cap S(X^*,\lambda,l_1^2)$

COROLLARY 2.5 : If inf $p_{mn} > 0$ and X is sequentially barrelled lcTVS then

$$(\begin{array}{c} c_{0}^{2} (X, \lambda, p) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ where \\ l_{1}^{2}(X^{*}, \lambda) = \{ \overline{f}_{=}(f_{mn}) : f_{mn} \in X^{*}, \\ m, \\ \Sigma \Sigma \left[\lambda_{mn} \right]^{-1} g_{B^{0}} \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X, \lambda, p)^{\beta} = (c_{0}^{2}(X, \lambda, p)^{\gamma} = l_{1}^{2}(X^{*}, \lambda) \\ (c_{0}^{2}(X,$$

 f_{mn}) < ∞ for each B \in B $\}$.

For the next theorem we define

(2.2) $M^2_{\infty}(X^*, \lambda [n], p) = \{ \overline{f}_{=}(f_{mn}) \in X^*, m, n \}$ $\geq 1 \quad \text{such that for each B} \quad \in B \text{ and for each } K > 1,$ $\sum \sum |\lambda_{mn}|^{-1} g_{B^{o}}(f_{mn}) K^{-1/p_{mn}} < \infty \}$

THEOREM 2.6 : If X is sequentially barreled lc TVS then

$$(l^2_{\infty}(X,\lambda,p))^{\alpha} = M^2_{\infty}$$

$$(X^*,\lambda_{p)}$$

Moreover from Lemma 2.1 and Theorems 1.4 and 2.6, we easily get : COROLLARY 2.7 : If X is sequentially barreled lcTVS then

$$(l^{2}_{\infty}(X, \lambda, p))^{\beta} = (l^{2}_{\infty}(X, \lambda, p))^{\gamma} = M^{2}_{\infty}(X^{*}, \lambda_{,p}).$$

III. CONTINUOUS DUAL

In the following Theorems continuous duals of $c_{0(X)}^{2}$, λ , p) and $c_{(X,\lambda,p)}^{2}$, p) are characterized by results applications of the concerning Köthe – Toeplitz duals obtained in section 2.

THEOREM 3.1: If X is sequentially barreled lcTVS then the topological dual $(c_0^2(\mathbf{X}, \lambda, \mathbf{p}))^* of (c_0^2(\mathbf{X}, \lambda_{\mathbf{p}}))$ σg) is isomorphic to $M_0^2(X^*, \lambda, p)$.

THEOREM 3.2 : If inf $p_{mn} > 0$ and X is sequentially barreled lcTVS then $_{\rm F} \in c^2(X, \lambda, p))^*$ the topological dual of $(c^2(X, \lambda, p), \sigma g)$, if and only if there exists $f \in X^*$ and $\overline{f}_{=}(f_{mn}) \in l_1^2(X^*, \lambda)$ such that for

$$\operatorname{each} \bar{x} = (x_{mn}) \in C^{2}(X, \lambda_{p})$$

$$F(\bar{x}) =$$

$$\langle x, f \rangle + \sum \sum \langle x_{mn}, f_{mn} \rangle$$

where $x \in X$ satisfies $(g_U(x_{mn} \lambda_{mn} - x))^{p_{mn}} \rightarrow 0$
 $as_{m+n} \rightarrow \infty$ for each $g_U \in D$.

١

REFERENCE

- [1] Horvath, J. : Topological Vector Spaces and Distributions ; Vol. I, Addison-Wesley, Publishing Company Palo Alto (1966).
- [2] Kamthan, P.K. and Gupta , M .: Sequence Spaces and Series ; Lecturenotes ,65 Marcel Dekker Inc, New York and Basel(1980).
- [3] K^Othe, G. : Topological Vector Spaces I ; Springer Verlag , New York ,(1969).
- York (1969). [4] Srivastava ,J.K. and Tiwari ,R.K. : Generalized matrix spaces $C_0^2(X,\lambda,p)$, $C^2(X,\lambda,p)$ and $l_{\infty}^2(X,\lambda,p)$; The Journal of Analysis 18(2010) ,361-371.
- Wilansky, A.: Modern Methods in Topological Vector Spaces ; Mc [5] -Graw-Hill Book Co. Inc. New York,(1978).